2,843,379 research outputs found

    General behaviour of Bianchi VI_0 solutions with an exponential-potential scalar field

    Get PDF
    The solutions to the Einstein-Klein-Gordon equations without a cosmological constant are investigated for an exponential potential in a Bianchi VI_0 metric. There exists a two-parameter family of solutions which have a power-law inflationary behaviour when the exponent of the potential, k, satisfies k^2<2. In addition, there exists a two-parameter family of singular solutions for all k^2 values. A simple anisotropic exact solution is found to be stable when 2<k^2.Comment: 10 pages, no figures. To be published in General Relativity and Gravitatio

    Flexible construction of hierarchical scale-free networks with general exponent

    Full text link
    Extensive studies have been done to understand the principles behind architectures of real networks. Recently, evidences for hierarchical organization in many real networks have also been reported. Here, we present a new hierarchical model which reproduces the main experimental properties observed in real networks: scale-free of degree distribution P(k)P(k) (frequency of the nodes that are connected to kk other nodes decays as a power-law P(k)kγP(k)\sim k^{-\gamma}) and power-law scaling of the clustering coefficient C(k)k1C(k)\sim k^{-1}. The major novelties of our model can be summarized as follows: {\it (a)} The model generates networks with scale-free distribution for the degree of nodes with general exponent γ>2\gamma > 2, and arbitrarily close to any specified value, being able to reproduce most of the observed hierarchical scale-free topologies. In contrast, previous models can not obtain values of γ>2.58\gamma > 2.58. {\it (b)} Our model has structural flexibility because {\it (i)} it can incorporate various types of basic building blocks (e.g., triangles, tetrahedrons and, in general, fully connected clusters of nn nodes) and {\it (ii)} it allows a large variety of configurations (i.e., the model can use more than n1n-1 copies of basic blocks of nn nodes). The structural features of our proposed model might lead to a better understanding of architectures of biological and non-biological networks.Comment: RevTeX, 5 pages, 4 figure

    Random sampling vs. exact enumeration of attractors in random Boolean networks

    Full text link
    We clarify the effect different sampling methods and weighting schemes have on the statistics of attractors in ensembles of random Boolean networks (RBNs). We directly measure cycle lengths of attractors and sizes of basins of attraction in RBNs using exact enumeration of the state space. In general, the distribution of attractor lengths differs markedly from that obtained by randomly choosing an initial state and following the dynamics to reach an attractor. Our results indicate that the former distribution decays as a power-law with exponent 1 for all connectivities K>1K>1 in the infinite system size limit. In contrast, the latter distribution decays as a power law only for K=2. This is because the mean basin size grows linearly with the attractor cycle length for K>2K>2, and is statistically independent of the cycle length for K=2. We also find that the histograms of basin sizes are strongly peaked at integer multiples of powers of two for K<3K<3

    What determines the spreading of a wave packet?

    Full text link
    The multifractal dimensions D2^mu and D2^psi of the energy spectrum and eigenfunctions, resp., are shown to determine the asymptotic scaling of the width of a spreading wave packet. For systems where the shape of the wave packet is preserved the k-th moment increases as t^(k*beta) with beta=D2^mu/D2^psi, while in general t^(k*beta) is an optimal lower bound. Furthermore, we show that in d dimensions asymptotically in time the center of any wave packet decreases spatially as a power law with exponent D_2^psi - d and present numerical support for these results.Comment: Physical Review Letters to appear, 4 pages postscript with figure
    corecore